skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Darzi, Shayan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Incremental sheet metal forming is known for its high flexibility, making it suitable for fabricating low-batch, highly customized complex parts. In this article, a localized multipass toolpath referred to as localized reforming, with reverse forming in a region of interest, is employed within the double-sided incremental forming (DSIF) process to manipulate the mechanical properties of a truncated pyramid formed from austenitic stainless steel sheet, SS304, through deformation-induced martensite transformation. DSIF forms a clamped sheet through localized deformations by two opposing tools. The toolpath effect in localized reforming is examined in terms of martensite transformation, geometrical accuracy, and thickness distribution. The results are compared with a conventional toolpath, i.e., forming in a single pass. The results show that varying toolpaths lead to different martensite transformation levels, while final geometry and thickness remain similar. The study demonstrates that localized reforming significantly increases martensite transformation in the specified region, i.e., the center of the pyramid wall, to ∼70%, with a martensite fraction remaining around 25% elsewhere. In comparison, using a single pass forming toolpath leads to a decreasing martensite fraction from the base of the pyramid toward the apex, due to the heat generated, with values <10% along the entire wall. Through finite element simulation, it is shown that the increase in martensite transformation of the region of interest is with the plastic deformation accumulation during the reverse pass. These findings highlight the potential to tailor mechanical properties in specific areas using a reforming toolpath in DSIF. 
    more » « less
  2. Double-sided incremental forming (DSIF) is a die-less sheet metal forming process capable of fabricating complex parts. The flexibility of DSIF can be used for in-situ mechanical properties alteration, e.g., by controlling deformation-induced martensite transformation of austenitic stainless steels. In this paper, SS304L is deformed using DSIF at three different cooling conditions and two different tool paths to affect the martensite transformation. Additionally, finite element analyses were used to understandthe effect of tool paths on springback and plastic strain. Implementing a reforming tool path at the lowest achievable temperature resulted in a martensite volume fraction as high as 95%. 
    more » « less